3.81 \(\int \frac{1}{\sqrt{3+6 x^2+2 x^4}} \, dx\)

Optimal. Leaf size=104 \[ \frac{\sqrt{\frac{\left (3-\sqrt{3}\right ) x^2+3}{\left (3+\sqrt{3}\right ) x^2+3}} \left (\left (3+\sqrt{3}\right ) x^2+3\right ) \text{EllipticF}\left (\tan ^{-1}\left (\sqrt{\frac{1}{3} \left (3+\sqrt{3}\right )} x\right ),\sqrt{3}-1\right )}{\sqrt{3 \left (3+\sqrt{3}\right )} \sqrt{2 x^4+6 x^2+3}} \]

[Out]

(Sqrt[(3 + (3 - Sqrt[3])*x^2)/(3 + (3 + Sqrt[3])*x^2)]*(3 + (3 + Sqrt[3])*x^2)*EllipticF[ArcTan[Sqrt[(3 + Sqrt
[3])/3]*x], -1 + Sqrt[3]])/(Sqrt[3*(3 + Sqrt[3])]*Sqrt[3 + 6*x^2 + 2*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0642674, antiderivative size = 104, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.062, Rules used = {1099} \[ \frac{\sqrt{\frac{\left (3-\sqrt{3}\right ) x^2+3}{\left (3+\sqrt{3}\right ) x^2+3}} \left (\left (3+\sqrt{3}\right ) x^2+3\right ) F\left (\tan ^{-1}\left (\sqrt{\frac{1}{3} \left (3+\sqrt{3}\right )} x\right )|-1+\sqrt{3}\right )}{\sqrt{3 \left (3+\sqrt{3}\right )} \sqrt{2 x^4+6 x^2+3}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[3 + 6*x^2 + 2*x^4],x]

[Out]

(Sqrt[(3 + (3 - Sqrt[3])*x^2)/(3 + (3 + Sqrt[3])*x^2)]*(3 + (3 + Sqrt[3])*x^2)*EllipticF[ArcTan[Sqrt[(3 + Sqrt
[3])/3]*x], -1 + Sqrt[3]])/(Sqrt[3*(3 + Sqrt[3])]*Sqrt[3 + 6*x^2 + 2*x^4])

Rule 1099

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b +
q)*x^2)*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)]
)/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{3+6 x^2+2 x^4}} \, dx &=\frac{\sqrt{\frac{3+\left (3-\sqrt{3}\right ) x^2}{3+\left (3+\sqrt{3}\right ) x^2}} \left (3+\left (3+\sqrt{3}\right ) x^2\right ) F\left (\tan ^{-1}\left (\sqrt{\frac{1}{3} \left (3+\sqrt{3}\right )} x\right )|-1+\sqrt{3}\right )}{\sqrt{3 \left (3+\sqrt{3}\right )} \sqrt{3+6 x^2+2 x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0747967, size = 90, normalized size = 0.87 \[ -\frac{i \sqrt{\frac{-2 x^2+\sqrt{3}-3}{\sqrt{3}-3}} \sqrt{2 x^2+\sqrt{3}+3} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{1-\frac{1}{\sqrt{3}}} x\right ),2+\sqrt{3}\right )}{\sqrt{4 x^4+12 x^2+6}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/Sqrt[3 + 6*x^2 + 2*x^4],x]

[Out]

((-I)*Sqrt[(-3 + Sqrt[3] - 2*x^2)/(-3 + Sqrt[3])]*Sqrt[3 + Sqrt[3] + 2*x^2]*EllipticF[I*ArcSinh[Sqrt[1 - 1/Sqr
t[3]]*x], 2 + Sqrt[3]])/Sqrt[6 + 12*x^2 + 4*x^4]

________________________________________________________________________________________

Maple [A]  time = 0.229, size = 82, normalized size = 0.8 \begin{align*} 3\,{\frac{\sqrt{1- \left ( -1+1/3\,\sqrt{3} \right ){x}^{2}}\sqrt{1- \left ( -1-1/3\,\sqrt{3} \right ){x}^{2}}{\it EllipticF} \left ( 1/3\,x\sqrt{-9+3\,\sqrt{3}},1/2\,\sqrt{6}+1/2\,\sqrt{2} \right ) }{\sqrt{-9+3\,\sqrt{3}}\sqrt{2\,{x}^{4}+6\,{x}^{2}+3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*x^4+6*x^2+3)^(1/2),x)

[Out]

3/(-9+3*3^(1/2))^(1/2)*(1-(-1+1/3*3^(1/2))*x^2)^(1/2)*(1-(-1-1/3*3^(1/2))*x^2)^(1/2)/(2*x^4+6*x^2+3)^(1/2)*Ell
ipticF(1/3*x*(-9+3*3^(1/2))^(1/2),1/2*6^(1/2)+1/2*2^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{2 \, x^{4} + 6 \, x^{2} + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x^4+6*x^2+3)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(2*x^4 + 6*x^2 + 3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{\sqrt{2 \, x^{4} + 6 \, x^{2} + 3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x^4+6*x^2+3)^(1/2),x, algorithm="fricas")

[Out]

integral(1/sqrt(2*x^4 + 6*x^2 + 3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{2 x^{4} + 6 x^{2} + 3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x**4+6*x**2+3)**(1/2),x)

[Out]

Integral(1/sqrt(2*x**4 + 6*x**2 + 3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{2 \, x^{4} + 6 \, x^{2} + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x^4+6*x^2+3)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(2*x^4 + 6*x^2 + 3), x)